紧复凯勒曲面上的刚性拟有效类 本科论文答辩

曹君宇

清华大学数学科学系

2023年6月6日

- 4ロト4回ト4ミト4ミト ヨーりへの

- 1 课题背景
- 2 论文结果
- 3 参考文献

(ロ) (回) (目) (目) (目) (回)

- 1 课题背景
- 2 论文结果
- 3 参考文献

PSH(多重次调和) 函数

- 设 θ 是紧复 Kähler 流形 X 上的光滑闭 (1,1)-形式, 且 θ 是实的, 即 $\overline{\theta} = \theta$.
- 定义如下函数空间

$$\mathrm{PSH}(X,\theta) := \{ \varphi : X \to [-\infty,\infty)$$
上半连续 $| \varphi \in L^1_{\mathrm{loc}}, \theta + \mathrm{dd}^c \varphi \geq 0 \}$ 叫做 θ -psh 函数空间. 此处 $\mathrm{dd}^c = (\sqrt{-1}/2\pi) \partial \overline{\partial}$

• $\theta + \mathrm{dd}^c \varphi \geq 0$ 在流 (current) 的意义下理解: 对于任何一个正的光滑 (n-1,n-1)-形式 Ω , 即如下形式

$$\Omega = \sum_{I,J} \Omega_{I,J} \mathrm{d} z_I \wedge \mathrm{d} \overline{z}_J$$

其中 $\Omega_{I,J} \geq 0$ 作为 Hermitian 矩阵逐点半正定. 我们有

$$\int_{X} (\theta \wedge \Omega + \varphi \mathrm{dd}^{c} \Omega) \ge 0$$

◆□▶ ◆□▶ ◆ ■ ▶ ◆ ■ り へ ○

PSH(多重次调和) 函数的一些性质

- $\mathfrak{F}(\varphi, \psi) \in \mathrm{PSH}(X, \theta)$, $\mathfrak{M}(\varphi, \psi)$, $\frac{\varphi + \psi}{2} \in \mathrm{PSH}(X, \theta)$
- 给 $PSH(X,\theta)$ 装备 L^1 -拓扑, 则 $PSH(X,\theta)$ 是 $L^1(X)$ 的闭子 空间
- 函数 $PSH(X,\theta) \ni \varphi \mapsto \sup_{X} \varphi \in \mathbb{R}$ 在 L^1 -拓扑下连续
- 设μ是X上的光滑正测度,集合

$$PSH(X, \theta)_n := \{ \varphi \in PSH(X, \theta) \mid \int_X \varphi d\mu = 0 \}$$

是紧集

PSH 函数和正闭流

• 设 $T \in X$ 上的一个 (1,1)-正闭流 (positive closed current), 它对应一个同调类 $\alpha = \{\theta\}$, 其中 $\theta \in \alpha$ 的一个光滑代表元. 此时我们可取 $\varphi \in L^1(X)$ 使得

$$T = \theta + \mathrm{dd}^{c} \varphi$$

 φ 被称作 T 的势函数

• 所有同调类取 $\alpha = \{\theta\}$ 的正闭流一一对应于

$$PSH(X,\theta)/\mathbb{R}$$

于是 PSH 函数可被视作正闭流的势函数

• $\varphi \in PSH(X, \theta)$ 在 $x_0 \in X$ 处的 Lelong 数定义为

$$\sup\{\gamma \geq 0 \mid \varphi(x) \leq \gamma \log|x-x_0| + O(1) \text{ 当 x 趋于 } x_0\} =: \nu(\varphi, x_0)$$

它是有限的. 若 φ 局部有界, 它的 Lelong 数为 0.

同调类的正性

- 设 $\alpha \in H^{1,1}(X,\mathbb{R})$ 是 X 上的同调类, θ 是 α 的一个光滑代表 亓..
- 我们定义如下同调类的正性:
- α 是拟有效的 (pesudo-effective), 当且仅当 $PSH(X,\theta) \neq \emptyset$, 当且仅当存在正闭流 T, 它的同调类等于 α .
- α 是大的 (big), 当且仅当存在同调类等于 α 的正闭流 T, 满 足 $T > \epsilon \omega$, 此处 $\epsilon > 0$, ω 是 Hermitian 度量.
- α 是丰沛的 (ample), 当且仅当存在同调类等于 α 的光滑正 形式 T. 满足 $T > \epsilon \omega$.
- 拟有效类 C 大类 C 丰沛类

与代数几何的关系

- 此处设 X 是光滑射影流形,L 是其上的全纯线丛.
- (Kodaira)c₁(L) 是丰沛的同调类当且仅当 L 是丰沛的
- (Demailly, [DPS01]) c₁(L) 是大的同调类当且仅当 L 是大的, 即

$$\operatorname{vol}(L) = \limsup_{k \to \infty} \frac{H^0(X, kL)}{k^{\dim(X)}/\dim(X)!} > 0$$

问题的来源

- 函数空间 $PSH(X, \theta)$ 的大小可反应 $\alpha = \{\theta\}$ 的正性.
- 例如,PSH(X,θ) ≠ ∅ 当且仅当 α = {θ} 是拟有效类.
- 此外,设 $\alpha = \{\theta\}$ 是大类,则函数空间 $PSH(X,\theta)$ 的切空间 包含所有光滑函数方向: 对任一 $\varphi \in PSH(X,\theta)$ 及 $f \in C^{\infty}(X)$,我们有 $\varphi + tf \in PSH(X,\theta)$ 对 $|t| \ll 1$.
- 问题: 当 α 是大类时, 函数空间 $PSH(X,\theta)$ 足够大. 那么函数空间 $PSH(X,\theta)$ 足够小时, α 有什么性质?
- 非空集合 $PSH(X,\theta)$ 最小只能到 $\mathbb{R} + \varphi_0$.

刚性类的定义

• $\alpha = \{\theta\}$ 是拟有效类, 我们称 α 是刚性的, 如果

$$PSH(X, \theta) = \varphi_0 + \mathbb{R}$$

此定义不依赖于 θ 的选取.

- 等价地,存在唯一的正闭流在同调类 α 里.
- 若 $\alpha = c_1(L)$ 是刚性类, 且 L 有整体截面. 则 $h^0(X, mL) = 1$.
- 例子: 设 $\pi: \tilde{X} \to X$ 是对X 点p 的爆发 (blow up), 设E 是对应的例外除子. 则 $\{E\}$ 是刚性的.

刚性类的性质

- 记 \mathcal{R} 为刚性类构成的集合, 由定义 $\mathcal{R} \subset \mathcal{E}$. 此处 \mathcal{E} 是拟有效类构成的集合.
- $a \in \mathcal{R}$ 且 $\lambda \in \mathbb{R}_{>0}$ 蕴含 $\lambda a \in \mathcal{R}$
- $a, b \in \mathcal{E}$ 且 $a + b \in \mathcal{R}$ 蕴含 $a, b \in \mathcal{R}$
- $0 \in \mathcal{R}$
- 若 X 是 Kähler 流形, 则 $\mathcal{R} \subset \partial \mathcal{E}$
- 设 $\pi: Y \to X$ 是紧 Kähler 流形间的全纯满射, 其纤维连通. 则 α 是 X 上的刚性类当且仅当 $\pi^*\alpha$ 是 Y 上的刚性类

刚性类的例子

 (Serre's example) 设 C 是椭圆曲线, E 是 C 上的一个二维全 纯向量丛, 满足如下的正合列

$$0 \longrightarrow \mathcal{O}(C) \longrightarrow E \longrightarrow \mathcal{O}(C) \longrightarrow 0$$

对应扩张类 $e \in \operatorname{Ext}^1(\mathcal{O}(C), \mathcal{O}(C)) = \operatorname{H}^1(C, \mathcal{O}_C)$. 取 $X := \mathbb{P}(E)$ 为一射影流形, $D := \mathbb{P}(\mathcal{O}_C)$ 为 X 上的除子. 当 $e \neq 0$, 即上述正合列不分裂时, $D \not\in X$ 上的刚性除子. D 还是数值有效的.

将上述 X 在 p ∈ D 处做爆发 (blow-up), 考虑 D 在此爆发下的拉回, 我们得到了新的刚性除子

$$\tilde{D} + E = \pi^* D$$

此处 D, E 是自相交数为 -1 的素除子. 拉回后的除子仍然是数值有效的.

12 / 30

刚性类的例子 (续)

 (Green 流) 考虑紧复 Kähler 曲面 (X,ω) 的一个带正熵的自 同构 f, 它会自然的诱导出一对正闭流 T^{\pm} 如下

$$T^{\pm} = \lim_{n \to \infty} \frac{(f^{\mp})_*^n}{\lambda^n} \omega, \qquad \lambda = e^h \quad h$$
是动力系统 (X, f) 的熵

它们叫做 Green 流 (Green currents).

由 Cantat 及 Dinh-Sibony 的工作, 上述 Green 流的同调类是 数值有效的刚性类. 且 Green 流的势函数是 Hölder 连续的.

- 1 课题背景
- ② 论文结果 刚性拟有效类的分类定理 刚性有效除子的研究 拟有效举的直径函数
- 3 参考文献

(ロ) (団) (目) (目) (目) (1)

- 1 课题背景
- ② 论文结果 刚性拟有效类的分类定理 刚性有效除子的研究 拟有效类的直径函数
- 3 参考文献

4 ロ ト 4 団 ト 4 豆 ト 4 豆 ・ り 9 0 0

曲面上刚性拟有效类的分类定理

设 α 是紧复 Kähler 曲面 X 上的拟有效类, 则

- α 是刚性类当且仅当 $Z(\alpha)$ 是刚性类, $Z(\alpha)$ 是其 Zariski 分解 的正部.
- $\exists \alpha \in X$ 上的刚性数值有效类, 它必为如下几种形式之一
- 第一类 $\alpha = a\{D\}$, 此处 $a \in \mathbb{R}_{>0}$, D 是一个素除子
- 第二类 $\alpha = \{R\}$, 此处 R 是一个正闭流, 其 Lelong 数处处为 O, 且 $R_{2c}^2 = 0$.
- 第三类 $\alpha = a \sum_{i \in I} a_i \{D_i\}, \mathbb{Q} \ni a_i > 0, a > 0.$ 这里 / 是一个有限指标 集, 且 $\{D_i\}_{i\in I\setminus\{j\}}$ 是一族例外素除子, 取遍所有 $j\in I$.

回忆前面所说的例子: Serre's example 对应第一类刚性数值有效 类, Green 流代表第二类刚性类. 通过对第一类刚性数值有效除子 做爆发 (blow-up), 我们可得到第三类刚性数值有效类.

曲面上的 Zariski 分解

- 设 X 是紧复 Kähler 曲面,α 是 X 上的一个拟有效类
- 我们对 α 有如下的 Zariski 分解: $\alpha = Z(\alpha) + \{N(\alpha)\}$, 此处 $Z(\alpha)$ 是数值有效类, $N(\alpha)$ 是一个 \mathbb{R} -有效除子.
- $N(\alpha) = \sum a_i E_i$ 是例外类, 即相交形式 $(E_i \cdot E_i)$ 是负定矩阵.
- Zariski 分解在如下意义下唯一: 它将 α 写成修正数值有效类 (这里是 $Z(\alpha)$ 与例外 \mathbb{R} -有效除子 (这里是 $\{N(\alpha)\}$) 的和. 且在相交形式下正交.
- 当 X 是射影流形, 若 $\alpha = c_1(L)$. 则上述 Z ariski 分解和代数 几何中对线丛 L 的 Zariski 分解一样.

简略证明

• 利用 Boucksom 对 Zariski 分解的解析刻画 [Bou04], 我们可知

$$T \in \alpha$$
 当且仅当 $T \geq [N(\alpha)]$

此处 T 是同调类 α 里的正闭流. 如果 $Z(\alpha)$ 是刚性类, 对任何正闭流 $T \in \alpha$, 我们得到正闭流 $T - [N(\alpha)] \in Z(\alpha)$. 由 $Z(\alpha)$ 的刚性, $T - [N(\alpha)]$ 是唯一的, 于是 T 被唯一确定, α 是刚性类.

• 于是我们将问题约化至数值有效类的情形. 设 α 是刚性的数值有效类, $T \in \alpha$ 是其中的正闭流. 对 T 做萧荫堂分解

$$T = \sum_{i \geq 1} a_i [D_i] + R$$

此处 $a_i \geq 0$, D_i 是素除子.

- (ロ) (個) (注) (注) (注) かく()

简略证明 (续)

- 利用 Hodge 指标定理, 上文的分解里 T = R 或 R = 0.
- 当 R = 0 时, 再次利用 Hodge 指标定理即可完成证明.
- 若 X 是紧 hyper-Kähler 流形, Hodge 指标定理及 Zariski 分 解仍然成立 (见 [Bou04]). 于是我们可导出类似的结果.

- 1 课题背景
- ② 论文结果 刚性拟有效类的分类定理 **刚性有效除子的研究** 拟有效类的直径函数
- 3 参考文献

(ロ) (団) (目) (目) (目) (1)

刚性有效除子

注意第一类和第三类刚性拟有效类都是 Z-有效除子, 我们研究 有效除子的刚性.

定理

设 X 是一个紧复流形, D 是上面的一个 \mathbb{Z} -有效除子, 记 $L := \mathcal{O}_X(D)$ 是全纯线丛. 则如下的论断互相等价:

- [D] 是刚性正闭流.
- ② 线丛 L 上的正奇异权 $\varphi_D = \log |f_D|^2$ 有极小奇点.
- ⑤ 存在 Supp(D) 的一个全纯邻域 U. 使得线丛 以, 上的任一 正奇异权的奇点都不比 $\varphi_D = \log |f_D|^2$ 严格小.
- 4 对 Supp(D) 的任何一个全纯邻域 U, 线丛 $L|_{U}$ 上的任一正 奇异权的奇点都不比 $\varphi_D = \log |f_D|^2$ 严格小.

刚性有效除子(续)

于是除子的刚性是一种邻域性质:

定理

设 X 与 X' 是两个紧复流形, D 和 D' 分别是 X 与 X' 上的有效 除子. 假设存在 D 的全纯开邻域 U (分别地,D) 的全纯开邻域 U'), 以及一个双全纯映射

$$g:U\to U'$$

其将 D 映到 D'.则 [D] 是刚性的当且仅当 [D'] 是刚性的.

刚性有效除子(续)

回忆紧复曲面上的几何

定理 (Proposition 4.3 in [BPV84])

设 X 是一个紧复曲面, C 是其上的一个光滑嵌入的有理曲线, 如 果 $(C^2) = 0$, 则存在一个紧合双有理映射 (modification)

$$\varphi: X \to Y$$

此处 Y 是一个直纹面, C 与例外除子 $Exc(\varphi)$ 不交, 且 $\varphi(C)$ 是 Y 的一个纤维.

于是曲面上的光滑嵌入有理曲线不可能是刚性除子, 除非它是例 外除子.

- 1 课题背景
- 2 论文结果 拟有效类的直径函数
- 3 参考文献

4□ > 4圖 > 4 분 > 4 분 > **₽** 990

拟有效类的直径函数

• 对紧复 Kähler 流形 X 上的拟有效类 α . 我们得到如下无限 维紧凸体

$$\mathcal{E} \ni \alpha \mapsto \{\varphi_1 - \varphi_2 \mid \varphi_1, \varphi_2 \in \mathrm{PSH}_n(X, \theta)\} =: \Delta \mathrm{PSH}_n(X, \alpha)$$

• α 的直径函数是上述凸体在 $L^{P}(X,\mu)$ 空间下的直径:

$$\operatorname{diam}_{\boldsymbol{p},\boldsymbol{\mu}}(\boldsymbol{\alpha}) := \sup_{\boldsymbol{f} \in \Delta \mathrm{PSH}_{\boldsymbol{n}}(\boldsymbol{X},\boldsymbol{\alpha})} ||\boldsymbol{f}||_{L^{\boldsymbol{p}}(\boldsymbol{X},\boldsymbol{\mu})}$$

diam_{n,μ}(α) = 0 当且仅当 α 是刚性类.

复环面上的计算

定理

设 $E = \mathbb{C}/\mathbb{Z}[\sqrt{-1}]$ 是一椭圆曲线, $X = E \times E$ 是一复环面. 对 X上的同调类 $\theta = \sqrt{-1}(\alpha dz_1 + dz_2) \wedge \overline{(\alpha dz_1 + dz_2)}$ $(\alpha \in \mathbb{C})$, 我们 有

$$\operatorname{diam}(\theta) = \begin{cases} 0 & a \in \mathbb{C} \backslash \mathbb{Q}(\sqrt{-1}) \\ \frac{1}{|q|^2} d_0 & a = \frac{p}{q} \mathbb{E} \mathbb{Q}(\sqrt{-1}) \text{中的既约分式} \end{cases}$$

这里 $d_0 = \operatorname{diam}(\sqrt{-1} dz_1 \wedge d\overline{z_1}).$

复环面上的计算 (续)

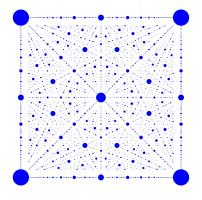


图 1: $\mathbb{Q}(\sqrt{-1})$ 中的点, 点的大小 $\sim 1/|q|^2$ (credit to 薛皓天)

4 D > 4 D > 4 E > 4 E > E 4) Q (9

- 1 课题背景
- 2 论文结果
- 3 参考文献

[Bou04] Sébastien Boucksom.

Divisorial Zariski decompositions on compact complex manifolds.

Annales Scientifiques de l'École Normale Supérieure, 37(1):45–76, January 2004.

[BPV84] W. Barth, C. Peters, and A. Ven.

Compact complex surfaces, 1st Editon.

Springer Berlin Heidelberg, 1984.

[DPS01] Jean-Pierre Demailly, Thomas Peternell, and Michael Schneider.

Pseudo-effective line bundles on compact Kähler manifolds.

International Journal of Mathematics, 12(06):689–741, August 2001.

Thanks!

◆ロト ◆部 → ◆重 > ◆重 > ・ ■ ・ り Q (*)